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0

Introduction

We start the book by presenting some basic examples of rewriting, in order
to set the stage.

At school, many of us have been drilled to simplify arithmetical expressions,
for instance:
3+5)-(142) —8-(14+2) —8-3—24

This simplification process has several remarkable properties.

First, one can perceive a direction, at least in the drill exercises, from
complicated expressions to simpler ones. For this reason we use — rather
than =, even though the expressions are equal in the sense that they all
denote the same number (24). The relation — is called a reduction relation.

Second, in most drill exercises the simplification process yields a result in
the form of an expression that cannot be simplified any further, which we call
a normal form. In the above example the result 24 is such a normal form.

Third, the simplification process is non-deterministic, often different sim-
plifications are possible. It is clearly desirable that all simplifications lead to
the same result. Indeed the above outcome 24 can be obtained in different
ways, e.g. also by

(3+5)-(1+2) —(3+5)-3—3-3+5-3—9+5-3—>9+15— 24

The property that simplifications can have at most one final result is called
uniqueness of normal form.

The process of simplifying arithmetical expressions built up from numbers
with operations like + and - can be analysed (and taught) as performing
elementary steps in contexts. The elementary steps are based on the tables of
addition and multiplication. The contexts are arithmetical expressions with a
hole, denoted by O, indicating the place where the elementary step is to take
place. In the first example above, the elementary step 3+5 — 8 is performed
in the context O - (1 + 2). This means that O is 3 4+ 5 before, and 8 after,
the elementary step, yielding the simplification (345) - (1+2) — 8- (1+2).
(Brackets are not part of the term, but are auxiliary symbols preventing false
readings of the term.) The next elementary step is 1 + 2 — 3, performed in
the context 8 - O, yieding the simplification 8- (1 +2) — 8- 3. Finally, the
elementary step 8 - 3 — 24 is performed in the context O, as this elementary
step involves the whole term.



2 Introduction

Among our early experiences are, besides arithmetical simplification, also
drill exercises that do not yield a final result, such as counting:

1-2—-3—---
Another example is the cyclic elapsing of the hours on a clock:
12— 211—-12—>1—---

The absence of a normal form is called non-termination. In many applica-
tions termination is a desirable property. The following example shows that
termination can be a non-trivial question.

Define a reduction relation on positive integer numbers

n—n'

by putting n’ = n/2 if n > 1 is even, and ' = 3n+1if n > 1 is odd. Thus 1
is the only normal form. We have reductions such as

7—22—-11 —34 —- 17— 52 — 26 — 13
—-40—-20—m10—-5—-16—-8—4—2—1

Note that we have both decrease (in the case n/2) and increase (in the case
3n +1). It is an open question' whether or not every positive integer can be
reduced to 1 in this way.

This book is about the theory of stepwise, or discrete, transformations of
objects, as opposed to continuous transformations of objects. Many compu-
tations, constructions, processes, translations, mappings and so on, can be
modelled as stepwise transformations of objects. Clearly, this yields a large
spectrum of applications, depending on what are the objects of interest and
what transformations, or rewriting, one wishes to do. One has string rewri-
ting, term rewriting, graph rewriting, to name some of the principal subjects
that will be treated. In turn, these main subjects lead to several specialized
theories, such as conditional term rewriting, infinitary term rewriting, term
graph rewriting, and many more. In all these different branches of rewriting
the basic concepts are the same, and known as termination (guaranteeing the
existence of normal forms) and confluence (securing the uniqueness of normal
forms), and many variations of them.

In order to appreciate the variety of applications and to further introduce
the main concepts, let us view a few examples from different fields. We will
return to some of these examples in future chapters.

!Collatz’s problem, also known as the Syracuse problem.
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0.1. An example from functional programming

Rewriting techniques can be used to specify operations on abstract data types.
The first introductory example, taken from Arts [1997], describes in a concise
way an algorithm for dividing natural numbers, giving for all pairs (m,n)
with n > 1 and m = n-q > 0 the correct result q. The abstract data type in
question is that of the natural numbers built up with 0 : N and S : N—N.
We write 0 for 0, 1 for S(0), 2 for S(S(0)), and so on. There are four rewrite
rules:

minus(z,0) — x
minus(S(x),S(y)) — minus(z,y)
quot(0,S(y)) — 0
quot(S(z),S(y)) — S(quot(minus(z,y),S(y)))

As an example we exhibit the following reduction sequence.

quot(4,2) S(quot(minus(3,1),2))

L
N

Normal forms are 0,1, 2, ..., but also minus(0,1) and quot(2,0). For the cor-
rectness of such algorithms with respect to the operations on the abstract
data type, it is obviously desirable that the algorithms have unique results.
This is guaranteed if every reduction sequence eventually terminates, and
moreover the resulting normal form is independent of the particular choice
of reduction sequence. Later on in this book we will develop methods to
facilitate the proofs of such properties.

2. An example from topology: Reidemeister moves

In this example the objects are knots. For our purposes it suffices to state
that a knot is a piece of (flexible) wire whose ends coincide. We assume knots
to be two-dimensional, lying on a flat surface such as a kitchen table, with
crossings only in one single point. In case of a crossing, it is always clear
which of the two parts of the wire involved is the upper and which is the
lower (in the pictures, the lower wire is interrupted just before and after the
crossing).

Knots are considered to be equivalent when they can be transformed into
one another in a continuous way, that is, without breaking the wire. As a
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Figure 1: Reidemeister moves

consequence, knots could be taken as equivalence classes, but here we are
interested in the equivalence relation itself. There are some well-known ele-
mentary transformations, known as the ‘Reidemeister moves’; such that two
knots are equivalent if and only if they can be transformed into one another
using only Reidemeister moves.

Figure 1 depicts the Reidemeister moves, Figure 2 gives a transformation
between a certain knot and the trivial knot, also called the ‘un-knot’. Al-
though the un-knot is the simplest knot, it should not be considered as a
normal form: the Reidemeister moves can be used in both directions. There
is no use for the concept of normal form in this example. Not every knot can
be transformed into the un-knot; there are in fact infinitely many different
knots.

0.3. An example from logic: tautology checking

This example exploits the well-known equivalence between boolean algebras
and boolean rings (rings with 2> = ). In the setting of boolean algebras
=, V, - are the usual propositional connectives; + is exclusive disjunction
and - is conjunction. In the setting of rings + is the ring addition, - the
ring multiplication. Furthermore, 0 stands for the boolean false as well as
for the additive unit, and 1 stands for the boolean true as well as for the
multiplicative unit. The operators + and - are supposed to be commutative
and associative.

Now we have the remarkable fact that every propositional formula is a
tautology if and only if it can be rewritten to 1 using the rewrite rules be-
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Figure 2: Un-knotting

low, modulo associativity and commutativity. This means that rewrite steps
may be preceded by rearranging the order and the bracket structure of sums
and products. (In fact this constitutes an example of rewriting modulo an
equivalence relation, made precise in Section 14.3.)

The above equivalence and the rewrite rules already appear in Herbrand’s
PhD thesis of 1929. The symbol — is used for a rewrite step, and should not
be confused with = which stands for implication.

T =Yy — x-y+ax+1
zVy — rx-yt+txr+y
-z — x+1
x+0 — T

T+ — 0

-0 — 0

z-1 — T

x-T —
r-(y+2) — x-y+ax-z

As an example we exhibit the following reduction of the tautology p = (¢ =
p) to 1, where the most relevant associative/commutative steps are also stip-
ulated. As usual in algebra, we omit the multiplication sign -.

plg=p)+p+1
plap+q+1)+p+1=p((gp+q) +1)+p+1
plgp+q) +pl+p+1

pgp+pg+pl+p+1

p=(¢=p)

L A
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pap+pg+p+p+1=pegp+pg+(p+p)+1
pap +pq+0-+1=pgp+ (pg+0) + 1

pap +pq+1=(pp)g+pg+1
pq+pg+1=(pg+pg) +1

0+1=1+0

1

L A A

It is not our goal to give a correctness proof of this algorithm for tautology
checking. Note, once more, that rewriting is non-deterministic: we could have
started in the example above with the rightmost implication in p = (¢ = p).
It is necessary for the correctness of the algorithm that any reduction sequence
starting with p = (¢ = p) yields the outcome 1. This will be guaranteed by a
notion called confluence, formulated for arbitrary abstract reduction systems
in the chapter that follows now.





